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Abstract

A challenging issue in computerized detection of clustered microcalcifications

(MCs) is the frequent occurrence of false positives (FPs) caused by local image

patterns that resemble MCs. We develop a context-sensitive deep neural net-

work (DNN), aimed to take into account both the local image features of an MC

and its surrounding tissue background, for MC detection. The DNN classifier is

trained to automatically extract the relevant image features of an MC as well as

its image context. The proposed approach was evaluated on a set of 292 mam-

mograms using free-response receiver operating characteristic (FROC) analysis

on the accuracy both in detecting individual MCs and in detecting MC clusters.

The results demonstrate that the proposed approach could achieve significantly

higher FROC curves when compared to two MC-based detectors. It indicates

that incorporating image context information in MC detection can be beneficial

for reducing the FPs in detections.

Keywords: Computer-aided diagnosis (CAD), clustered microcalcifications

(MCs), deep neural network (DNN), deep learning.

1. Introduction

Breast cancer is currently the most frequently diagnosed non-skin cancer in

women. It is estimated that about 252,710 new breast cancer cases and 40,610
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breast cancer deaths will occur among women in the US in 2017 [1]. Mammog-

raphy is an effective screening tool for diagnosis of breast cancer, which can5

detect about 80%-90% of breast cancer cases in women without symptoms [1].

One important early sign of breast cancer in mammograms is the appearance

of clustered microcalcifications (MCs), which are found in 30%-50% of mammo-

graphically diagnosed cancer cases [2, 3]. MCs are tiny calcium deposits which

appear as bright spots in mammograms (Figure 1). Clustered MCs are formed10

by a group of MCs closely distributed within a spatial region (typically within

a 1 cm2 area). While often seen, accurate detection and diagnosis of MCs in

mammograms can be difficult, because of their subtlety in appearance, variation

in shape and size, and inhomogeneity in surrounding tissue. Clustered MCs can

occur both in benign cases and in malignant cases. Compared with malignant15

cases, benign MC clusters tend to have fewer and smaller MCs; on the other

hand, clustered MCs in malignant cases tend to exhibit a wider variation in

appearances within a cluster [4].

(a)

(b)

Figure 1: (a) Example ROIs with clustered MCs (200×200 pixels, 0.1 mm/pixel); (b) Locations
of individual MCs marked by red circles.
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In the literature, computerized methods have been investigated for accurate

detection of clustered MCs [5, 6, 7, 8, 9, 10]. These methods are referred to20

as computer-aided detection (CADe) in screening mammography, the purpose

of which is to serve as an alert to the radiologists by detecting the presence

of suspicious regions in a mammogram for examination. In these methods,

detection of clustered MCs is typically performed in two steps. In the first

step, an MC detector is applied to locate the candidates of individual MCs in a25

mammogram; afterward, the detected MCs are grouped into clusters according

to a set of clustering criteria. Based on the fact that individual MCs are small

(typically 0.1-1 mm in diameter), most of the detectors (if not all) are designed

to exploit the local image characteristics of an MC (e.g., [5, 6, 8, 10, 11]). For

example, Salfity et al [5] used a difference-of-Gaussians (DoG) filter wherein30

the filter consisted of two kernels of limited width parameters. El-Naqa et al

[6] adopted a local image window centered at a location under consideration.

Oliver et al [8] extracted features by using a filter bank to obtain a description

of the local morphology of an MC. Mordang et al [10] applied two CNNs for

MC detection in multi-vendor mammography, in which one CNN was used to35

remove easy samples and another was used for classifying the survived samples;

the input sample consisted of a local window at a detection location. Samala

et al [11] studied the use of CNNs with different parameter settings to reduce

false positives (FPs) in MC detection in digital breast tomosynthesis.

While successful in achieving high sensitivity, a challenging issue facing MC40

detection methods is the frequent occurrence of FPs. This is because the detec-

tor response is susceptible to local image patterns that resemble MCs. Indeed,

there are several known factors that can contribute to the occurrence of FPs in

mammograms, including MC-like noise patterns, linear structures (attributed

to vessels, ducts, fibrous tissue, skinfolds, edges and other anatomical features),45

inhomogeneity in tissue background, imaging artifacts, etc [12]. There have

been studies on how to suppress FPs in MC detection. These methods typi-

cally exploit not only the image characteristics of the MCs themselves but also

their surroundings. For example, noise equalization techniques were developed
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for reducing the noise variability in a mammogram [13, 14]; background re-50

moval methods were used to suppress the inhomogeneity in tissue background

[15]; image features associated with linear structures were also incorporated for

reducing FPs [16, 17, 12, 9].

Recently, we developed a different approach in [18] to detecting the presence

of clustered MCs in mammograms. Instead of first detecting the MCs individ-55

ually, we applied a convolutional neural network (CNN) to determine directly

whether an image region contains an MC cluster or not. With this approach,

the input to the CNN classifier was formed by a large image window (roughly 1

cm2 in area) that contains not only the individual MCs but also their surround-

ing image context. The CNN classifier was then optimized through training to60

learn the relevant features for detecting MC clusters. This approach was demon-

strated to be more robust to the FP patterns in mammograms when compared

to several existing MC detectors [18]. This detector is intended only for iden-

tifying suspicious regions for subsequent examination. It does not specify the

locations of individual MCs within the detected region.65

Built on the success of the global detection approach in [18], in this study we

investigate the feasibility of extending this approach by also incorporating local

MC features such that it could improve the accuracy in detecting individual

MCs. In computer-aided diagnosis (CADx), accurately detecting the individual

MCs in a cluster is important, because the image features of the detected MCs70

are further analyzed for classification as being benign or malignant [19, 20, 21,

22, 23]. Studies have shown that the accuracy of detected individual MCs can

impact on the CADx performance [24, 25, 26].

We develop a deep neural network (DNN) architecture, aimed to take into

account not only the local image features of an MC but also its surrounding75

image context, for MC detection. Specifically, the detector network is formed by

two subnetworks, one for extracting the local image features and one for learning

the image features of its surrounding background. The extracted features by

the two subnetworks are combined subsequently for classifying whether an MC

is present or not at a detection location. Consequently, the detector response80
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is automatically adapted to the image background at an MC; the proposed

detector is termed as context-sensitive DNN accordingly. In the experiments,

we evaluated the proposed approach both for the task of correctly identifying

individual MCs in a given image region and for the task of detecting the presence

of MC clusters in mammograms. Both tasks are essential in developing CADe85

and CADx systems for clustered MCs.

We note that deep learning methods have been increasingly applied to a

variety of problems in medical imaging in recent years. For example, in [27]

Inception-v3 networks were used for detecting diabetic retinopathy in retinal

fundus photographs. In [28] an ensemble of CNNs was applied to discrimi-90

nate between benign and malignant breast tumors in breast dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI). In [29] a parasitic metric

learning net was used for breast mass classification in mammograms. In [30]

a deep Siamese neural network was studied for spinal metastasis detection in

MRI. In [31] a nucleus-guided feature extraction framework based on CNN was95

proposed for computer-aided diagnosis of breast cancer in histopathological im-

ages.

The rest of the paper is organized as follows. The problem formulation and

the proposed context-sensitive DNN classifier are presented in Section 2. The

experiments for evaluating the performance of the proposed DNN detector in100

detecting both individual MCs and MC clusters are descried in Section 3. The

evaluation results are presented in Section 4. Finally, conclusions are given in

Section 5.

2. Context-sensitive deep neural network model

2.1. Motivation and overview of MC detector architecture105

In this study we formulate MC detection as a two-class classification problem,

wherein a classifier is employed to determine whether an MC object is present

(class 1) or absent (class 0) at a location under consideration in a mammogram
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image. The classifier is trained through supervised learning, for which examples

of MC objects and non-MC objects are used to optimize the classifier model.110

As noted in the introduction, given the localized nature of individual MCs,

it is desirable for the classifier to examine the image features only within a small

neighborhood around an MC object. On the other hand, it is beneficial to also

examine the image features in the surrounding background of an MC in order

to suppress the occurrence of potential FPs in detection. A straightforward115

solution would be to simply apply the detector to an image window that is

much larger in extent than the MC. However, this can be problematic, because

the individual MCs in a cluster may occur in close vicinity of each other.

Out of the above considerations, in this study we propose a context-sensitive

detector by taking into account both the local image features and the surround-120

ing image background of an MC. As illustrated in Figure 2, at a detection

location, we apply two image windows as input to the classifier simultaneously,

one for characterizing the image features of an MC object while the other for de-

scribing the properties of the surrounding image background. For the classifier,

we consider a deep neural network (DNN) structure. Accordingly, it consists of125

two subnetworks, one operating on the local image window and the other on

the surrounding image background, as illustrated in Figure 3. Conceptually, the

subnetwork in the second branch is used to extract the local image features of an

MC object (hence termed local subnetwork); it plays a similar role to a local MC

detector [6, 32]. The subnetwork in the first branch is used to characterize the130

contextual information surrounding an MC (hence termed global subnetwork),

which is used to suppress potential FP objects in detection (such as those in

linear structures). The resulting image features from the two branches are fed

together into the fully-connected layers for classifying whether the input object

is an MC or not. The two subnetworks are trained to learn and optimize the135

relevant contextual and local image features simultaneously. In image classifi-

cation problems it was demonstrated that features extracted by deep learning

could yield improved performance over hand-crafted features [33, 34].
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Figure 2: At a detection location, a small image window is used for characterizing the image
features of an MC object, whereas a large image window is used for its surrounding tissue
background.

2.2. Architecture of context-sensitive DNN

As illustrated in Figure 3, the input to the proposed DNN classifier is formed140

by two image windows co-centered at a detection location. For convenience,

let M1×M1 and M2×M2 denote the sizes of these two windows (M1>M2),

respectively. In concept, the M1×M1 window is chosen to be sufficiently large

so that it is representative of the image context around the detection location,

whereas the M2×M2 window should be small enough to cover the extent of a145

single MC object (to avoid overlapping with other MCs).

The two subnetworks in the DNN classifier are each formed by a cascade

of several convolutional (Conv), batch normalization, nonlinearity, and max-

pooling (Pooling) layers, followed by several fully connected (FC) layers for

final classification output. The composition of these layers for each subnetwork150

is optimized through model training (as to be described in Section 2.4). The

details of these layers are as follows.

Convolutional layers are the core layers in the context-sensitive DNN clas-

sifier. They are used to extract the features in the input image at varying

spatial scales. Each Conv layer produces a number of feature maps by convolv-155

ing its input with a set of convolutional kernels. Mathematically, let x be the

input, wk be the kth convolutional kernel, and yk be the corresponding output,

k = 1, 2, · · · ,K, where K is the number of convolutional kernels. Then the
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output of a Conv layer can be described by:

yk = x ∗wk + bk (1)

where ∗ denotes the convolution operation and bk is a bias. There are typically160

several (i.e. K > 1) convolutional kernels in each Conv layer. For example, as

indicated in Figure 3, there are 32 convolutional kernels used in the first Conv

layer of the global subnetwork, each producing a feature map of 95× 95 pixels.

In this study, all the convolutional kernels are set to be 3× 3 in size.

Batch normalization layers are used to deal with the issue of internal covari-165

ate shift during training, a phenomenon that the distribution of a layer’s input

values varies with the parameters of its proceeding layers [35]. These normaliza-

tion layers are used to independently normalize the feature values at each layer

to zero mean and unit standard deviation during each training batch, wherein

the normalization parameters are estimated from all the samples in the training170

batch. Such a normalization step can speed up learning and improve classifi-

cation accuracy [35]. In the proposed context-sensitive DNN classifier, a batch

normalization layer is applied to each Conv layer for feature map normalization;

due to space limitation, these layers are omitted in Figure 3.

Nonlinearity layers are used to produce a non-linear transformation on the175

output of the corresponding neurons. In this study, we consider rectified linear

units (ReLU) as follows:

f(x) = max(0, x) (2)

Compared with sigmoid activation functions, ReLU units can lead to faster

training [36, 37] and yield sparse representations [37]. Due to space limitation,

these layers are omitted in Figure 3 as well.180

Max-pooling layers are used to achieve non-linear down-sampling of the fea-

ture maps [38]. The rationale is to enable the Conv layers to extract image

features at increased scales. In this study, the output at each max-pooling layer

is generated for every other location (i.e. with stride 2) by taking the maximum

9



value in the 3× 3 neighborhood of the location.185

Finally, two fully-connected layers are used in Figure 3. They play the same

role as in a standard feed-forward neural network [36]. The two layers have

128 and 2 neurons, respectively. The input to the first fully connected layer is

formed by all the features from the two subnetworks.

In the final output, a softmax activation function is used [39]. The output190

can be interpreted as the probability of an input belonging to one of the two

classes.

2.3. Variants of DNN architecture for optimization

The particular architecture in Figure 3 was used to illustrate the context-

sensitive DNN classifier. In this study, we investigated several variants of this195

DNN architecture for optimizing MC detection. These variants were obtained

by varying the number of Conv layers used in the two subnetworks. Such choice

was based on the observation that the number of Conv layers tends to have a

larger impact on performance than other parameters (such as the number of

filters and filter size) in the design of deep architectures [40].200

Global subnetwork: The structure of the global subnetwork is motivated by

the work previously developed in [18], where a CNN classifier was applied for

determining whether a mammogram region contains clustered MCs (instead of

a single MC) or not. We adopt this classifier here for characterizing the image

background (i.e., context) surrounding a detection location. For this network,205

the size M1 of the input image window was set to be 95 in the experiments; this

corresponds to an image region of approximately 1 cm2 (image resolution at 0.1

mm/pixel). Such a setting was out of the consideration that clustered MCs are

typically localized within a 1 cm2 area.

For optimizing the architecture, we varied the number of Conv layers in-210

creasingly from three to eight. The corresponding structures of these variants

are summarized in Table 1. Note there is a batch normalization layer and a non-

linearity layer immediately after each convolutional layer; they are not listed in

Table 1 for brevity. A note is that, compared to the CNN classifier in [18], in
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this study batch normalization layers are used in place of local response normal-215

ization (LRN) layers in order to avoid the potential need for optimizing their

associated parameters.

Table 1: The different structures considered for the global subnetwork in this study. There is
a batch normalization layer and a nonlinearity layer after each Conv layer, but not listed in
this table for brevity. For each structure, the presence of a layer is marked by 3sign.

#
filters

feature
maps

3
Convs

4
Convs

5
Convs

6
Convs

7
Convs

8
Convs

Conv 32 32×95×95 3 3 3 3 3 3

Conv 32 32×95×95 - - - - - 3

Pooling - 32×47×47 3 3 3 3 3 3

Conv 64 64×47×74 3 3 3 3 3 3

Conv 64 64×47×47 - - - - 3 3

Pooling - 32×23×23 3 3 3 3 3 3

Conv 128 128×23×23 3 3 3 3 3 3

Conv 128 128×23×23 - - - 3 3 3

Pooling - 32×11×11 3 3 3 3 3 3

Conv 256 256×11×11 - 3 3 3 3 3

Conv 128 256×11×11 - - 3 3 3 3

Pooling - 256×5×5 - 3 3 3 3 3

Local subnetwork: The local subnetwork is intended to characterize the image

features of an MC object. For this purpose, the input image window to this

network needs to be comparable to that of an MC in size. In the experiments,220

the size M2 of this window was set to be 9; such a choice was found to be

adequate in the previous studies on MC detectors [6, 32].

As in the global subnetwork, we also optimized the structure of the local

subnetwork. Considering that the input image window is much smaller in the

latter, we varied the number of Conv layers from one to four. The correspond-225

ing structures of these variants are summarized in Table 2. As in the global

subnetwork, there is a batch normalization layer and a nonlinearity layer after

each convolutional layer; they are omitted in Table 2 for brevity.

In summary, there were four variants considered for the local subnetwork and

six variants for the global subnetwork considered in this study. During model230
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Table 2: The different structures considered for the local subnetwork in this study. There is a
batch normalization layer and a nonlinearity layer after each Conv layer, but omitted in this
table for brevity. For each structure, the presence of a layer is marked by 3sign.

# filters feature maps 1 Conv 2 Convs 3 Convs 4 Convs

Conv 32 32×9×9 3 3 3 3

Conv 32 32×9×9 - - 3 3

Pooling - 32×4×4 3 3 3 3

Conv 64 64×4×4 - 3 3 3

Conv 64 64×4×4 - - - 3

training, these variants were used in combinations for the two subnetworks,

yielding a total of 4 × 6 = 24 different structures. The one with the best

validation error was chosen in the end for testing the detection performance.

2.4. Model training and optimization

For a given network structure, the various associated parameters are de-235

termined during the training phase. This is accomplished by minimizing the

binomial logistic loss on the set of training samples, or equivalently, the cross-

entropy between the model output and the actual labels of training samples

[41].

For model training, we extracted a large number of MC samples and non-240

MC samples from an allocated set of mammograms (Section 3.2). Similarly, for

model selection, we also extracted a large of MC samples and non-MC samples

for an allocated set of mammograms for validation (Section 3.1). These vali-

dation samples were independent of the training samples. They were used for

computing the validation errors of different DNN structures after training.245

We implemented the proposed context-sensitive DNN classifier using the

Keras package with Theano backend. For model training, the adaptive moment

estimation (Adam) method [42] was used with the following parameters: batch

size = 256, β1 = 0.9, β2 = 0.999, and ε = 10−8. For model validation, a

model structure was assessed on the validation set after every 1,000 iterations250

of training with the maximum number of iterations set at 20,000; here one

iteration refers to an update of the model parameters by a batch of training
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samples. In the end, the model structure with the smallest validation error was

selected as the optimal model.

As to be described later in 3.2, there were far more non-MC samples than255

MC samples in the training set. To keep the samples from the two classes in

a more balanced way, we adopted the following strategy in training: 1) for the

first 10,000 iterations, we randomly selected 128 MC samples and 128 non-MC

samples in each batch; 2) for the second 10,000 iterations, we simply randomly

selected 256 samples from all the training samples in each batch for training.260

The second step was used for fine-tuning model training based on training set.

Finally, to overcome potential model overfitting, a stochastic dropout tech-

nique [43] was applied during training. This dropout procedure is a regular-

ization technique in which different neural units and their connections are ran-

domly dropped from the network with a certain probability (0.5 was used in our265

experiments).

3. Experiments

3.1. Mammogram dataset

In the experiments we demonstrated the proposed approach using both

screen-film mammogram (SFM) images and full-field digital mammogram (FFDM)270

images. We made use of 521 SFM images from 297 cases (151 benign/146 can-

cer), and 188 FFDM images from 95 cases (52 benign/43 cancer). All these

images were collected by the Department of Radiology at the University of

Chicago. They were consecutive cases collected over different time periods, and

were all sent for biopsy due to the subtlety of their MC lesions. Each mammo-275

gram image had at least one cluster of MCs which was histologically proven. The

SFM images were acquired using a Lumiscan film digitizer (Lumisys; Sunnyvale,

CA). The FFDM images were acquired using a Senographe 2000D FFDM sys-

tem (General Electric Medical Systems; Milwaukee, WI). All the images were of

0.1 mm/pixel in spatial resolution. The MCs in each mammogram were manu-280

ally identified by a group of experienced radiologists. In total, there are 27,022
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MCs in these mammograms, which were used as ground truth in our evaluation.

The collection of mammogram images was randomly partitioned into three

subsets, one with 167 cases (300 images) for training, one with 67 cases (117

images) for validation, and one with 158 cases (292 images) for testing. It is285

noted that most of the cases had multiple views (mediolateral oblique view,

cranio-caudal view, or views from both breasts). To avoid any potential bias,

the different views from one case were assigned together to either the training,

validation, or testing subset exclusively.

Prior to MC detection, a background subtraction step was first applied to a290

mammogram image under consideration in order to suppress the inhomogeneity

in the tissue background. For each location, the background was estimated as

the average intensity of a circular region with a diameter of 7 pixels centered at

the location [13]. Afterward, the resulting image was normalized to have zero

mean and unit standard deviation.295

3.2. Extraction of data samples for DNN training and model validation

From each mammogram in the training set, we first extracted the MC class

samples from the marked MCs in the image. At each marked MC location,

two image windows (as indicated earlier in Figure 2) were cropped to form one

input sample to the classifier. To balance the number of samples from different300

mammograms, no more than 150 MC samples were extracted when a particular

mammogram had a large number of MCs. In the end there were a total of 9,197

MC samples extracted.

Similarly, we extracted the non-MC class samples from the training mam-

mograms. Given that the majority area in a mammogram does not have any305

MCs, to increase the number of training samples, we extracted k times as many

non-MC samples as MC samples from each mammogram. These non-MC sam-

ples were obtained from locations randomly selected in the background tissue

area (without any MCs) of the mammogram. We varied k increasingly as 2, 4,

8, 16, and 20, and determined that the validation error of the trained classifier310

plateaued at 20. Thus, k = 20 was used in the end.
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To further enlarge the number of training samples, we applied a data aug-

mentation procedure for improving the performance of the DNN classifier [36,

44]. Specifically, we applied the following operations to augment the extracted

image samples in the training set: 1) flipping the image from left to right, 2)315

flipping the image up-down, and 3) rotating the image by 90◦, 180◦, and 270◦,

respectively. The number of training samples was increased by five times after

data augmentation. Note that these operations did not alter the spatial resolu-

tion of the samples, which is important in detection of MCs in a mammogram.

Finally, for the purpose of model validation, we also extracted a set of MC320

samples and non-MC samples from the set of 117 mammograms allocated for

model validation using the same procedure described above. However, no data

augmentation was applied for these validation samples. There were a total of

4,739 MCs in these validation mammograms. These validation samples were

used to determine the best DNN architecture obtained from training.325

3.3. Test 1: Accuracy of detecting individual MCs in image regions

To demonstrate the performance of the proposed DNN classifier, we first

evaluated its accuracy in detecting individual MCs. For this purpose, we allo-

cated 125 mammograms from the test set. For each mammogram, two image

ROIs were cropped, one containing clustered MCs, and one without any MCs.330

The ROI with MCs was set to be 500× 500 or 1000× 1000 pixels according to

the size of the MC cluster; the ROI without any MCs was set to be 500 × 500

pixels. This resulted in a total of 125 ROIs with clustered MCs and 125 ROIs

without. We assessed the accuracy of the detected MCs by the DNN classifier

in these image regions.335

To summarize the detection performance, we conducted a free-response re-

ceiver operating characteristic (FROC) analysis of the MC detection results.

An FROC curve is a plot of the true-positive (TP) fraction of the MCs detected

versus the average number of FPs per unit image region (1cm2 in area) with

the decision threshold varied over an operating range [45]. For clarity, this is340

referred to as MC-based FROC analysis.
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In the MC-based FROC analysis, the TP fraction was computed from the

average of the TP fractions of the ROIs with clustered MCs, whereas the FP

rate was computed from both the ROIs with and without any MCs [46]. In the

detector output, a detected object was treated as a TP when at least 40% of its345

area overlaps with that of a true MC or its distance to the center of a true MC

is no larger than 0.3 mm; otherwise it was counted as an FP [45].

Given that most of the image area in a mammogram does not have any

MCs, in the experiments we first applied a pre-detection procedure to speed up

the detection process. Instead of applying the DNN detector to every location350

in the image, we first obtained a set of potential MC candidates by using the

difference-of-Gaussians (DoG) detector [5]. The DNN classifier was then applied

to identify the MCs from this set of candidates. The DoG detector was chosen

because of its computational simplicity. It consists of two Gaussian kernels with

width parameters set as σ1 = 1.1 and σ2 = 1.4 [5]. To insure high sensitivity in355

detection, the decision threshold was deliberately set to a low value such that it

yielded a TP rate of 93.9% in the training images; at this level, it also yielded

a high rate of 104.9 FPs per unit region (1 cm2).

To accommodate the variations associated with case selection and facilitate

statistical comparisons, we applied a bootstrapping procedure in the MC-based360

FROC analysis on the set of mammogram ROIs [47]. In our experiments a total

of 20,000 bootstrap samples were used, based on which the partial area under

the FROC curve (pAUC) was obtained.

3.4. Test 2: Accuracy of detecting MC clusters in mammograms

We also evaluated the performance of the proposed approach in detection of365

MC clusters from mammograms. In this test, our goal is to assess the accuracy

when the DNN classifier is applied to detect the presence of MC clusters in a

mammogram. For this purpose, we used the 167 images (113 SFM, 54 FFDM)

from the remaining 84 cases in the test set.

To evaluate the detection performance, we conducted an FROC analysis on370

the detection results from the test mammograms. Different from the MC-based
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FROC analysis above, the FROC analysis here is to study the accuracy of the

detected MC clusters (rather than individual MCs) in the mammograms. To

avoid any potential confusion, this FROC study is referred to as cluster-based

FROC analysis. In this analysis, the FROC curve is a plot of the true-positive375

(TP) rate of detected MC clusters versus the average number FP clusters per

image with the decision threshold varied continuously over its operating range.

In cluster-based FROC analysis, a detected MC cluster was considered as

a TP according to the following criteria [48]: (1) it includes at least two true

MCs; and (2) its center of gravity is within 1 cm of that of a known true MC380

cluster region. Likewise, a detected cluster was counted as an FP provided that

(1) it contains no true MCs, or (2) the distance between its center of gravity

and that of any known cluster region is larger than 1 cm. It is noted that the

cluster-based FROC curve can be sensitive to the detection criteria used [48].

However, the relative performance by different detection methods with respect385

to a common set of criteria tends to be consistent [6, 9, 18].

To detect the MC clusters in a mammogram, the DNN classifier was ap-

plied to detect the presence of individual MCs first. Afterward, the detected

MCs were grouped into clusters by using a connecting distance of 0.5 cm [18].

Those clusters with fewer than three detections were discarded. The remain-390

ing detected clusters were determined to be TP or FP according to the criteria

described above.

To reduce the effect of case variations, we applied a bootstrapping procedure

on the set of test mammograms for obtaining the cluster-based FROC [47].

A total of 20,000 bootstrap samples were used, based on which pAUC was395

obtained. To speed up the FROC analysis, in the experiments we first applied

a pre-scouting step as in [9], during which up to four most suspicious regions

of 5cm × 5cm in size were identified in each mammogram image for further

consideration. Afterward, the proposed DNN classifier was applied for detecting

the MCs in these regions (as in Test 1 above).400
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3.5. Methods for comparison

To demonstrate the overall performance of the proposed context-sensitive

DNN classifier, we also considered the following MC detection methods in the

experiments:

1) Unified SVM detector: Recently developed in [9], this MC detector was405

designed to suppress occurrence of FPs caused by linear structures and MC-like

noise patterns. It was demonstrated to yield improved performance over several

existing MC detectors [9].

2) CNN cluster detector: This detector was developed for direct detection

of the presence of clustered MCs in an image region based on deep learning410

[18]. It was demonstrated to outperform several existing MC based detectors in

detecting MC clusters.

3) A local DNN detector: In contrast to the proposed context-sensitive

DNN classifier, we also considered a DNN detector by using only the local

subnetwork in the DNN architecture (Figure 3). This is to demonstrate the415

benefit of the additional use of the global subnetwork for context learning in

MC detection. For convenience, this detector is referred to as local DNN. In the

experiment, the local DNN classifier was trained with the same set of training

samples by using the same procedure as in the context-sensitive DNN.

4. Results and Discussions420

4.1. Model selection and model robustness

In Table 3 we summarize the validation results obtained by the proposed

context-sensitive DNN classifier with various model structures. In this table,

the classification errors on the MC and non-MC samples in the validation set

(Section 3.2) are given for different variants of the global and local subnetworks.425

As can be seen, the best classification error of 0.533% was obtained by the DNN

classifier with three Conv layers in the local subnetwork and seven Conv layers

in the global subnetwork (Figure 3). Consequently, this model structure was

selected for subsequent performance evaluation.
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Table 3: Validation errors achieved by the context-sensitive DNN classifier with different
architectures of the local and global subnetworks.

Local
subnetwork

Global subnetwork

3 Convs 4 Convs 5 Convs 6 Convs 7 Convs 8 Convs

1 Conv 0.739% 0.655% 0.638% 0.682% 0.646% 0.766%

2 Convs 0.657% 0.633% 0.554% 0.569% 0.579% 0.560%

3 Convs 0.725% 0.581% 0.656% 0.627% 0.533% 0.571%

4 Convs 0.672% 0.556% 0.644% 0.545% 0.671% 0.603%

It is noted from Table 3 that the validation errors are consistently small for430

the different structures, with the worst case being 0.766% obtained with one

Conv layer in the local subnetwork and eight Conv layers in the global subnet-

work. These results indicate that the DNN classifier performance is relatively

robust to the variations in the two subnetworks. In addition, in Figure 4 we

show a plot of the training and validation errors vs. the number of iterations435

obtained by the optimal architecture; in the end, the one with the smallest

validation error (e.g., 9,000 iterations) was selected.
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Figure 4: Plot of training and validation errors for every 1,000 iterations obtained by the
context-sensitive DNN architecture with three Conv layers in the local subnetwork and seven
Conv layers in in the global subnetwork.
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4.2. Test 1: Accuracy of detecting individual MCs in image regions

In Figure 5 we show the MC-based FROC curve obtained by the context-

sensitive DNN classifier in detecting individual MCs on the set of test mammo-440

gram ROIs (Section 3.1). In this plot, the y-axis represents the fraction of true

MCs detected (i.e., sensitivity) by the classifier, whereas the x-axis represents

the number of FPs detected per unit mammogram area (1 cm2). For compari-

son, the MC-based FROC curve obtained by the Unified SVM detector is also

shown in Figure 5. As can be seen, the FROC curve of the context-sensitive445

DNN classifier is notably higher (hence better detection performance). A sta-

tistical comparison between the two classifiers yielded a difference of 1.15 in

pAUC (p-value < 10−4; 95% C. I. = [0.97, 1.34]) for FP rate over the range of

[0, 10]. In particular, with TPF at 80%, the context-sensitive DNN classifier

achieved an FP rate of 1.03 FPs/cm2, compared to 5.69 FPs/cm2 by the Uni-450

fied SVM (a reduction of 81.9%). Moreover, with FP rate at 1 FP/cm2, the

context-sensitive DNN classifier achieved a sensitivity of 79.7%, compared to

66.1% for the Unified SVM.
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Figure 5: MC-based FROC curves obtained by different classifiers in detecting individual
MCs: 1) context-sensitive DNN (Context DNN), 2) Unified SVM, and 3) local DNN.
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Moreover, to demonstrate the effect of context learning by the global sub-

network in the DNN classifier, in Figure 5 we also show the MC-based FROC455

curve obtained by the local DNN; this classifier has three Conv layers as the

context-sensitive DNN classifier. As can be seen, the FROC curve of the local

DNN is much lower compared to the context-sensitive DNN. A statistical com-

parison between the two yielded a difference of 1.26 in pAUC (p-value < 10−4;

95% C. I. = [1.07, 1.46]) for FP rate over the range of [0, 10] FPs/cm2. In par-460

ticular, with TPF at 80%, the context-sensitive DNN classifier achieved an FP

rate of 1.03 FPs/cm2, compared to 6.00 FPs/cm2 by the local DNN (a reduction

of 82.8%). Moreover, with FP rate at 1 FPs/cm2, the context-sensitive DNN

classifier achieved a sensitivity of 79.7%, compared to 62.9% for the local DNN.

These results clearly indicate the benefit of context learning for improving the465

detection accuracy of individual MCs.

4.3. Test 2: Accuracy of detecting MC clusters in mammograms

In Figure 6 we show the cluster-based FROC curve obtained by the context-

sensitive DNN classifier in detection of MC clusters in mammograms. In this

plot, the y-axis represents the fraction of true MC clusters detected (i.e., sen-470

sitivity) among the test mammograms, while the x-axis represents the average

number of FP clusters per image. For comparison, the cluster-based FROC

curve obtained by the Unified SVM is also shown. As can be seen, the FROC

curve is higher for the context-sensitive DNN classifier; a statistical comparison

between the two yielded a difference of 0.10 in pAUC (p-value = 0.0060; 95% C.475

I. = [0.02, 0.18]) for FP rate over the range of [0, 2] clusters/image. In particu-

lar, with TPF at 85%, the context-sensitive DNN classifier achieved an FP rate

of 0.40 clusters/image, compared to 0.52 clusters/image by the Unified SVM

classifier (a reduction of 22.2%). Moreover, with FP rate at 0.5 clusters/image,

the optimal context-sensitive DNN classifier achieved a sensitivity of 87.4%,480

compared to 84.6% for the Unified SVM classifier.

In addition, in Figure 6 we also show the cluster-based FROC curve obtained

by the local DNN classifier. As can be seen, the FROC curve is much lower than
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the context-sensitive DNN; a statistical comparison between the two yielded a

difference of 0.15 in pAUC (p-value < 0.0001; 95% C. I. = [0.076, 0.24]) for485

FP rate over the range of [0, 2]. In particular, with TPF at 85%, the context-

sensitive DNN classifier achieved an FP rate of 0.40 clusters/image, compared

to 1.10 clusters/image by the local DNN classifier (a reduction of 63.5%). More-

over, with FP rate at 0.5 clusters/image, the context-sensitive DNN classifier

achieved a sensitivity of 87.4%, compared to 76.4% for the local DNN classifier.490

These results indicate that the context learning in the context-sensitive DNN is

beneficial for improving the detection accuracy of MC clusters.
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Figure 6: Cluster-based FROC curves obtained by different classifiers in detecting MC clusters:
1) context-sensitive DNN (Context DNN), 2) Unified SVM, 3) local DNN, and 4) CNN cluster
detector.

Finally, in Figure 6 we also show the FROC curve obtained by the cluster-

based CNN classifier in [18]; this classifier was for direct detection of MC

clusters rather than individual MCs. Interestingly, the FROC curve of the495

CNN classifier is noted to be very close to the context-sensitive DNN classi-

fier; a statistical comparison between the two yielded a difference of 0.0032 in

pAUC (p-value = 0.4699; 95% C. I. = [−0.058, 0.068]) for FP rate over the

range of [0, 2] clusters/image. In particular, with TPF at 85%, the context-
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sensitive DNN classifier achieved an FP rate of 0.40 clusters/image, compared500

to 0.44 clusters/image by the CNN classifier. Moreover, with FP rate at 0.5

clusters/image, the context-sensitive DNN classifier achieved a sensitivity of

87.4%, compared to 86.6% for the CNN classifier. These results indicate that

the two classifiers can achieve essentially similar accuracy in detection of the

presence of MC clusters in mammograms. However, compared to the CNN505

classifier, the proposed context-sensitive DNN classifier is able to provide the

locations of individual MCs for further analysis.

In the experiments, the proposed context-sensitive DNN classifier was im-

plemented in a GPU card of GeForce GTX TITAN X with 12 GB memory. For

the selected model structure, it took about four and a half hours in training,510

and 12.18 seconds per mammogram on average for detecting MC clusters during

testing.

4.4. Detection examples

For illustration, in Figure 7 we show the detection results obtained by the

different detectors for the two ROIs shown earlier in Figure 1. In these re-515

sults, the operating points were set for the different detectors such that the TP

rate was 70% in detecting individual MCs. As can be seen, while most of the

MCs were correctly detected by the different detectors, there were fewer FPs in

the context-sensitive DNN classifier than the Unified SVM and the local DNN.

Specifically, for the first ROI (left), all the MCs were correctly detected without520

any FPs in the context-sensitive DNN, compared to one MC missed and three

FPs in the Unified SVM and one MC missed and eight FPs in the local DNN.

For the second ROI (right), there were two MCs missed and one FP in the

context-sensitive DNN, compared to two MCs missed and 10 FPs in the Unified

SVM and one MC missed and 15 FPs in the local DNN. Note that two FPs in525

the Unified SVM and nine FPs in the local DNN were associated with linear

structures.
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(a) Context-sensitive DNN

(b) Unified SVM

(c) Local DNN

Figure 7: Detection results achieved by different classifiers for the two example ROIs in Figure
1. In each ROI, the MCs are indicated by red circles, and the detections are indicated by blue
plus signs.
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4.5. Discussions

The evaluation results above demonstrate that incorporating global context

information into the proposed DNN classifier can lead to improvement in the530

detection accuracy of both individual MCs and MC clusters in mammograms.

MC detectors are developed traditionally for detecting the presence of clustered

MCs in mammograms which are intended as an alert for examination. Conse-

quently, their detection performance is typically evaluated on the accuracy of

the detected clusters. However, the accuracy of detected individual MCs is also535

important in CADx applications where a detected cluster is further analyzed for

classification as being benign or malignant. Therefore, we employed both MC-

based FROC and cluster-based FROC for measuring the detection performance

of the proposed approach.

From the cluster-based FROC results (Test 2) it is seen that the context-540

sensitive DNN detector could achieve a similar level of accuracy in detected MC

clusters to that the CNN classifier which was designed for direct MC cluster

detection. This is remarkable in that MC based detectors are more likely sus-

ceptible to FPs caused by MC-like noise and image patterns. This was evident

from the FROC results obtained by the local DNN classifier. Moreover, the545

global subnetwork employed in the context-sensitive DNN classifier is similar

to the CNN classifier for same global context processing. It is reasonable that

the context-sensitive DNN could match the results by CNN in terms of detected

MC clusters. More importantly, the proposed DNN could provide the important

result of individual MC locations.550

In this study, the input image window sizes (i.e. M1 and M2) for the two

subnetworks were chosen based on the typical physical size of individual MCs

and the spatial extent of MC clusters, as explained earlier in Section 2. However,

in the future, it might be interesting to further investigate what would be the

optimal combination of the two input windows. In addition, we considered CNN555

structures for both local and global subnetworks in this study. It would be also

interesting to investigate the use of the alternative architectural structures in the

proposed context-sensitive detector framework, such as ResNet [49], Inception
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[39, 50], and squeeze-and-excitation network [51]).

5. Conclusion560

In this study, we developed a context-sensitive DNN classifier for detecting

clustered MCs in a mammogram. The classifier takes into account both the

local image features and the surrounding image background in its decision at a

detection location. It consists of two subnetworks, one for extracting the local

image features of an MC object, and the other for characterizing its surround-565

ing background. We evaluated the proposed approach using FROC analysis on

a set of 292 screen-film and full-field digital mammogram images. The FROC

analysis was conducted both on the accuracy of detected individual MCs and

the MC clusters. The results show that the context-sensitive DNN could achieve

significantly more accurate results in detecting both individual MCs and MC570

clusters when compared to a local DNN classifier and the Unified SVM detec-

tor; moreover, it could also match the accuracy of a global CNN classifier in

detecting MC clusters. Specifically, with TPF at 80%, the context-sensitive

DNN achieved an FP rate of 1.03 FPs/cm2, compared to 5.69 FPs/cm2 for the

Unified SVM and 6.00 FPs/cm2 for the local DNN in detecting individual MCs.575

Similarly, with TPF at 85%, the context-sensitive DNN achieved an FP rate of

0.40 clusters/image, compared to 0.52 clusters/image for the Unified SVM and

1.10 clusters/image for the local DNN classifier in detecting MC clusters. These

results indicate that incorporating image context information in MC detection

can indeed improve the accuracy of detected MCs. Encouraged by these promis-580

ing results, we plan to further investigate whether this classifier could also lead

to improved performance in classifying a detected cluster as being benign or

malignant.
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